Analysis of fractional differential systems involving Riemann Liouville fractional derivative
نویسندگان
چکیده
منابع مشابه
Fractional Ince equation with a Riemann-Liouville fractional derivative
We extend the classical treatment of the Ince equation to include the effect of a fractional derivative term of order a > 0 and amplitude c. A Fourier expansion is used to determine the eigenvalue curves að Þ in function of the parameter , the stability domains, and the periodic stable solutions of the fractional Ince equation. Two important observations are the detachment of the eigenvalue cur...
متن کاملStability analysis of a class of nonlinear fractional differential systems with Riemann-Liouville derivative
This paper investigates the stability of n-dimensional nonlinear fractional differential systems with Riemann-Liouville derivative. By using the Mittag-Leffler function, Laplace transform and the Gronwall-Bellman lemma, one sufficient condition is attained for the asymptotical stability of a class of nonlinear fractional differential systems whose order lies in (0, 2). According to this theory,...
متن کاملA Survey on Semilinear Differential Equations and Inclusions Involving Riemann-Liouville Fractional Derivative
متن کامل
Extremal solutions for p-Laplacian fractional differential systems involving the Riemann-Liouville integral boundary conditions
where D , D , and D are the standard Riemann-Liouville fractional derivatives, I and I are the Riemann-Liouville fractional integrals, and 0 < γ < 1 < β < 2 < α < 3, ν,ω > 0, 0 < η, ξ < 1, k ∈R, f ∈ C([0, 1]×R×R,R), g ∈ C([0, 1]×R,R). The p-Laplacian operator is defined as φp(t) = |t|p–2t, p > 1, and (φp) = φq, 1 p + 1 q = 1. The study of boundary value problems in the setting of fractional cal...
متن کاملRegularity of Mild Solutions to Fractional Cauchy Problems with Riemann-liouville Fractional Derivative
As an extension of the fact that a sectorial operator can determine an analytic semigroup, we first show that a sectorial operator can determine a real analytic α-order fractional resolvent which is defined in terms of MittagLeffler function and the curve integral. Then we give some properties of real analytic α-order fractional resolvent. Finally, based on these properties, we discuss the regu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics
سال: 2020
ISSN: 1303-5991
DOI: 10.31801/cfsuasmas.670823